Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
نویسندگان
چکیده
This work examines the effect of Zr(4+) ions on the physical and photoelectrochemical (PEC) properties of hematite (α-Fe2O3) nanorod arrays grown in an aqueous solution containing zirconyl nitrate (ZrO(NO3)2) as a dopant precursor. The concentration of ZrO(NO3)2 in the precursor solution influenced both the film thickness and the Zr(4+) concentration in the resulting films. Zr doping was found to enhance the photocurrent for water splitting; the highest photocurrent at 1.0 V vs. Ag/AgCl (0.33 mA cm(-2)) for the Zr-doped α-Fe2O3 film was approximately 7.2 times higher than that for the undoped film (0.045 mA cm(-2)). Additionally, the incident photon to current efficiency (IPCE) at 360 nm and 1.23 V vs. the reversible hydrogen electrode (RHE) increased from 3.8% to 13.6%. Ultrafast transient absorption spectroscopy suggests that Zr doping may influence PEC performance by reducing the rate of electron-hole recombination.
منابع مشابه
Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting
Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...
متن کاملSolution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
Ta-doped hematite (α-Fe2O3) nanorod array films were successfully prepared on fluorine-doped tin dioxide (FTO) coated glass substrates via a facile solution growth process with TaCl5 as a Ta doping precursor. Under 1 sun illumination and at an applied potential of 1.0 V vs. Ag/AgCl, the Ta-doped α-Fe2O3 photoanode with optimized dopant concentration showed a photocurrent density as high as 0.53...
متن کاملنانومیلههای نانوبرگدار شده دیاکسید تیتانیم دوفازی بهمنظور استفاده در کاربردهای فتوالکتروشیمیایی
Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermo...
متن کاملFast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate
Well-aligned Cu-doped ZnO nanorods were successfully synthesized on polyethylene terephthalate (PET) substrate using chemical bath deposition method. The structural and optical properties of Cu-doped ZnO nanorods were investigated using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy...
متن کاملWater Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony‐Doped SnO2 Macropore/Branched α‐Fe2O3 Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015)
In article number 1500049, Dai-Bin Kuang and co-workers demonstrate a novel macroporous antimony-doped SnO 2 as dedicated charge collector with high surface area and optical enhancement to load hematite nanorods for highly efficient water splitting. With post treatments, the composite photoanode achieves an impressive photocurrent density under sun illumination.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 20 شماره
صفحات -
تاریخ انتشار 2013